Wiggins, Stephen
Introduction to Applied Nonlinear Dynamical Systems and Chaos / Stephen Wiggins - 2a. ed. - xix, 843 p. : ilustrado ; 23 cm. - Texts in applied mathematics 2 .
Equilibrium Solutions, Stability, and Linearized Stability -- Liapunov Functions -- Invariant Manifolde : Linear and Nonlinear Systems -- Periodic Orbits -- Vector Fields Possessing an Integral -- Index Theory -- Sonne General Propierties of Vector Fields : Existence, Uniqueness, Differentiability, and Flows -- Asymptotic Behavior -- The POincaré-Bendisson Theorem -- Poincaré Maps -- Conjugacies of Maps, and Varying the Croos-Section -- Structural Stabillity, Genericity, and Transversality -- Lagrange´s Equations -- Hamiltonian Vector Fields -- Gradient Vector Fields -- Reversible Dynamical Systems --Asymptotically Autonomous Vector Fields -- Center Manifolds -- Normal Forms -- Bifurcation of Fixed Points of Maps -- The Smale Horseshoe -- Symbolic Dynamics -- Dynamics Near Homoclinic Points of Two-Dimensional Maps -- Orbits Homoclinic to Hyperbolic fixed Points in Three-Dimensional Autonomous Vector Fields -- Melnikov´s Method for Homoclinic Orbits in Two-dimensional, Time-Periodic Vector Fields -- Liapunov Exponents -- Chaos and Strange Attractors Hyperbolic Invariant sets : a Chaotic Saddle -- Long Period Sinks in Dissipative and Elliptic Islands in Conservative Systems -- Global Bifurcations Arising from Local Codimension-Two Bifurcations -- Glosary of Frequently Used Terms -- Biblyography -- Index
0-387-00177-8
Diferentiable dynamical systems
Nonlinear theories
Chaotic behavior in systems
Sistemas dinámicos diferencial
Sistemas no lineales
Comportamiento caótico en sistema
003.85 / W655i
Introduction to Applied Nonlinear Dynamical Systems and Chaos / Stephen Wiggins - 2a. ed. - xix, 843 p. : ilustrado ; 23 cm. - Texts in applied mathematics 2 .
Equilibrium Solutions, Stability, and Linearized Stability -- Liapunov Functions -- Invariant Manifolde : Linear and Nonlinear Systems -- Periodic Orbits -- Vector Fields Possessing an Integral -- Index Theory -- Sonne General Propierties of Vector Fields : Existence, Uniqueness, Differentiability, and Flows -- Asymptotic Behavior -- The POincaré-Bendisson Theorem -- Poincaré Maps -- Conjugacies of Maps, and Varying the Croos-Section -- Structural Stabillity, Genericity, and Transversality -- Lagrange´s Equations -- Hamiltonian Vector Fields -- Gradient Vector Fields -- Reversible Dynamical Systems --Asymptotically Autonomous Vector Fields -- Center Manifolds -- Normal Forms -- Bifurcation of Fixed Points of Maps -- The Smale Horseshoe -- Symbolic Dynamics -- Dynamics Near Homoclinic Points of Two-Dimensional Maps -- Orbits Homoclinic to Hyperbolic fixed Points in Three-Dimensional Autonomous Vector Fields -- Melnikov´s Method for Homoclinic Orbits in Two-dimensional, Time-Periodic Vector Fields -- Liapunov Exponents -- Chaos and Strange Attractors Hyperbolic Invariant sets : a Chaotic Saddle -- Long Period Sinks in Dissipative and Elliptic Islands in Conservative Systems -- Global Bifurcations Arising from Local Codimension-Two Bifurcations -- Glosary of Frequently Used Terms -- Biblyography -- Index
0-387-00177-8
Diferentiable dynamical systems
Nonlinear theories
Chaotic behavior in systems
Sistemas dinámicos diferencial
Sistemas no lineales
Comportamiento caótico en sistema
003.85 / W655i